Jordan maps and zero Lie product determined algebras

نویسندگان

چکیده

Let $A$ be an algebra over a field $F$ with $(F)\ne 2$. If is generated as by $[[A,A],[A,A]]$, then for every skew-symmetric bilinear map $\Phi:A\times A\to X$, where $X$ arbitrary vector space $F$, the condition that $\Phi(x^2,x)=0 $ all $x\in A$ implies $\Phi(xy,z) +\Phi(zx,y) + \Phi(yz,x)=0$ $x,y,z\in A$. This applicable to question of whether zero Lie product determined and also used in proving Jordan homomorphism from onto semiprime $B$ sum antihomomorphism.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

on strongly jordan zero-product preserving maps

in this paper, we give a characterization of strongly jordan zero-product preserving maps on normed algebras as a generalization of  jordan zero-product preserving maps. in this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly jordan zero-product preserving maps are completely different. also, we prove that the direct p...

متن کامل

Jordan product determined points in matrix algebras

Let Mn(R) be the algebra of all n×n matrices over a unital commutative ring R with 6 invertible. We say that A ∈ Mn(R) is a Jordan product determined point if for every R-module X and every symmetric R-bilinear map {·, ·} : Mn(R)×Mn(R) → X the following two conditions are equivalent: (i) there exists a fixed element w ∈ X such that {x, y} = w whenever x ◦ y = A, x, y ∈ Mn(R); (ii) there exists ...

متن کامل

Zero Triple Product Determined Matrix Algebras

Let A be an algebra over a commutative unital ring C. We say that A is zero triple product determined if for every C-module X and every trilinear map {·, ·, ·}, the following holds: if {x, y, z} 0 whenever xyz 0, then there exists a C-linear operator T : A3 −→ X such that {x, y, z} T xyz for all x, y, z ∈ A. If the ordinary triple product in the aforementioned definition is replaced by Jordan t...

متن کامل

The second dual of strongly zero-product preserving maps

The notion of strongly Lie zero-product preserving maps on normed algebras as a generalization of Lie zero-product preserving maps are dened. We give a necessary and sufficient condition from which a linear map between normed algebras to be strongly Lie zero-product preserving. Also some hereditary properties of strongly Lie zero-product preserving maps are presented. Finally the second dual of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Mathematics

سال: 2022

ISSN: ['1303-6149', '1300-0098']

DOI: https://doi.org/10.55730/1300-0098.3226